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When an air bubble rises in a viscoelastic fluid there is a critical capillary number for 
cusping and jump in velocity: when the capillary number is below critical, which is 
about 1 in our data, there is no cusp at the tail of a (smooth) air bubble. For larger 
volumes, a two-dimensional cusp, sharp in one view and broad in the orthogonal view, 
is in evidence. Measurements suggest that the cusp tip is in the generic form y = 
satisfied by analytic cusps. The intervals of volumes for which dramatic changes in air 
bubble shape take place is very small and the two to ten fold increase in the rise velocity 
which accompanies the small change of volume could be modelled as a discontinuity. 
A second drag transition and an orientational transition occurred when U / c  > 1 where 
U is the rise velocity of an air bubble and c is the shear wave speed. For U / c  < 1, U 
is proportional to d2, where d is the equivalent diameter for a sphere of diameter d 
having the same volume, and when U / c  > 1 then U is proportional to d and the 
Deborah number does not change with U. Moreover the bubble shapes when U / c  < 1 
are overall prolate (with or without a cusped tail) with the long side parallel to gravity, 
in contrast to the oblate shapes which are always observed in Newtonian fluids and in 
viscoelastic fluids with U / c  > 1 when inertia is dominant. The formation of cusps 
occurs in all kinds of columns of different sizes and shapes. Cusping is generic but the 
orientation of the broad edge with respect to the sidewalls is an issue. There is no 
preferred orientation in columns with round cross-sections, or in the case of walls far 
away from the rising bubble. In columns with rectangular cross-sections, three 
relatively stable configurations can be observed: the cusp can be observed in the wide 
window and the broad edge in the narrow window; the cusp can be observed in the 
narrow window and the broad edge in the wide window or, less frequently, the broad 
edge lies along a diagonal. These orientational and drag alternatives are directly 
analogous to those which are observed in the settling of long or broad solid bodies (Liu 
& Joseph 1993). 

1. Introduction 
An astonishing two-dimensional cusp with a cusp point in one view and a spade edge 

in the orthogonal view can form at the tail of an air bubble rising in a viscoelastic fluid 
(Hassager 1979). It is hard to imagine how such a singularly asymmetric feature could 
arise in situations which in every respect suggest that an axisymmetric shape should 
prevail. New observations and measurements of the cusping of air bubbles rising in a 
viscoelastic liquid are reported here. The broad edge is flat like a spade, arched like an 
axe, pointed like an arrow or flat and tilted like a guillotine, depending on conditions 
(see figure 1). 

The results collected in this paper are closely related to the formation of cusps 
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Spade Axe Arrow Guillotine 

FIGURE 1 .  Shapes of the broad edge of the two-dimensional cusps. 

induced at the free surface of a viscous liquid by a rotating cylinder which is partially 
immersed in the reservoir of liquid (Joseph et al. 1991). The liquid forms a thick coat 
on the surface of the cylinder and the coat of liquid rotates nearly as a rigid body. The 
liquid is pulled out of the reservoir on one side and is plunged into the reservoir on the 
other side where it forms an apparent cusp at a critical capillary number Ca = Uv/a 
where 9 is the viscosity and CT is the surface tension. Joseph et al. (1991) showed that 
the cusp is given locally by y = ax2/3  when surface tension is neglected. Jeong & Moffatt 
(1992) solved a model problem exactly and they showed that surface tension rounds the 
cusp tip but that the radius of curvature at the cusp tip is exponentially small, of the 
order of hundreds of angstroms at capillary numbers of order one. Moreover, the 
shape of the free surface near the rounded cusp is universally y = ( I X ~ / ~ ,  independent of 
surface tension. The capillary number criterion for effective cusping of Jeong & Moffatt 
(1 992) is in broad agreement with the observations of Joseph et al. (199 1)  and with their 
own observations. Joseph (1992) argued that the cusp equation is just the one which 
satisfies F ( x , y )  = 0 for an analytic function F at lowest order (generically); that is 

1 
0 = F(x, y )  = ;&(o, 0 )  x2 + 3 F,,,(O, 0 )  y3 + O [ X ” / 3 ]  

in a coordinate system in which F,,(O, 0) = 0. From this point forward, we shall adopt 
the convention that a ‘two-dimensional cusp’ is an apparent or effective cusp with a 
small rounded tip whose radius perhaps reduces to molecular dimension at high 
capillary numbers, as in the analysis of Jeong & Moffatt. 

Joseph et al. (1991) showed that cusping occurs more abruptly in viscoelastic liquids 
with well-defined critical capillary numbers and well-defined cusps at the point of 
inception. Joseph’s (1992) local analysis of cusping of a second-order fluid without 
surface tension is consistent with the generic cusp shape y = ax2/3 but the flow field is 
more singular than in the Newtonian case, consistent with the observations. The 
critical capillary number for cusping of viscoelastic liquids ranges from 0.48 to 9.25 
deviating to both sides of the critical value for Newtonian liquids. 

In the present series of experiments on rising bubbles we see cusp formation in 
Newtonian liquids only when the column is tilted, and no cusping for free rising 
bubbles. Otherwise, air bubbles rising in viscoelastic liquids differ from those in 
Newtonian liquids in several ways. First, they are prolate with the long side parallel to 
gravity rather than oblate with the long side perpendicular to gravity. When the rise 
velocity is larger than the shear wave speed, inertia again dominates as in a Newtonian 
fluid. Depending on the bubble volume, the shapes of a rising bubble in viscous 
Newtonian fluids will, roughly speaking, go from spherical to oblate spherical to that 
of a spherical cap (a more varied range of regimes can be found in Bhaga & Weber 
1981). But, bubble shapes in many viscoelastic fluids range from spherical to prolate 
spherical to that with a trailing cusp. Trailing cusps form at a critical capillary number 
initiating a sudden change in shape of the bubble accompanied by a sharp reduction 
in drag and a large increase of the terminal rise velocity. Trailing cusps on gas bubbles 
and liquid drops and other shapes have been reported in experiments by Philippoff 
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(1937), Warshsy et al. (1959), Mhatre & Kintner (1959), Astarita & Apuzzo (1965), 
Barnett, Humpherey & Litt (1966), Calderbank (1967), Calderbank, Johnson & 
Loudon (1970), Leal, Skoog & Acrivos (1971), Zana & Leal (1978), Hassager (1979, 
1985) and Coutanceau & Hajjam (1982). Hassagar (1979) was the first to show that this 
trailing cusp is actually two-dimensional with a cusp edge in one direction and a spade 
edge in the orthogonal direction. Joseph & Renardy (1993) attempted to relate the 
bubble cusp to the free surface cusp induced by rotating cylinders. According to the 
present study, their hypothesis is found to be valid. 

Hassager (1979) reported an experiment which reveals an unexpected phenomenon, 
a ‘negative wake’ : the fluid behind the rising bubbles is actually flowing away from the 
bubbles in polymeric liquids. The negative wakes in polymeric liquids can be found not 
only behind bubbles also behind solid spheres according to Sigli & Coutanceau (1977), 
Bisgaard & Hassager (1982), and Bisgaard (1983). Such wakes have recently been 
computed by Feng et al. (1995) and by Joseph & Feng (1995). The existence of a 
negative wake suggests extensional forces tending to pull out a cusp against the 
restraining action of surface tension. 

Chilcott & Rallison (1988) modelled a dilute polymer solution as a suspension of 
dumbbells with finite extensibility. Flows past cylindrical and spherical surfaces at low 
Reynolds number were calculated using a no-slip (for a solid body) and a zero- 
tangential-stress (for a spherical or cylindrical bubble) boundary condition at the body 
surface. They found that at large Deborah numbers the polymer is most highly 
stretched in thin regions at the rear of the body and suggested that the stresses could 
overcome surface tension to produce cusped or pointed tips and a change of shape 
accompanied by a marked change of drag. 

Noh, Kang & Leal (1993) computed the steady deformation of an axisymmetric 
bubble in the creeping flow limit and called attention to a tendency to exhibit a 
transition from a spherical to a cusped shape as the capillary number increases. Figures 
15 and 20 in their paper show a tendency to form a cusp as capillary number increases 
from 0 to 0.5 (limited by the code). Their results are not inconsistent with our 
experimental observations of cusping at a critical capillary number of approximately 
unity, except that an axisymmetric cusp is never seen in experiments. 

A gas bubble rising in a viscoelastic liquid also exhibits a discontinuity in the 
terminal velocity at a critical cusping volume (see Astarita & Apuzzo 1965; Calderbank 
et al. 1970; Leal et al. 1971; Zana 1975; Acharya, Mshelkar & Ulbrecht 1977; Clift, 
Grace & Weber 1978; De Kte, Carreau & Mordarski 1986; Bird, Armstrong & 
Hassager 1987). Other researchers, such as Garner, Matrus & Jensen (1957), Warshey 
et al. (1959), Fararouri & Kintner (1961), Barnett & Humpherey (1966) have also noted 
a smaller and less abrupt transition in terminal velocity of liquid drops in viscoelastic 
fluids at some critical volume. 

Astarita & Apuzzo (1965) suggested that the discontinuity in the rise velocity is an 
effect of surface-active impurity which immobilize small bubbles. They assumed that 
the observed transition is due to a transition in the boundary condition from no-slip 
for small bubbles in the Stokes regime to free surface conditions for larger bubbles in 
the Hadamand-Ryligynski regime. Leal et al. (197 1) compared terminal velocities for 
gas bubbles and glass spheres in an aqueous polyacrylamide: no velocity discontinuity 
was observed for the glass sphere, but one was observed in the gas bubble. They 
concluded that these observations supplied strong evidence for the hypothesis of 
Astarita & Apuzzo. Calderbank et al. (1970) studied bubble shapes and terminal 
velocities in polymer solutions and expressed general approval of the hypothesis 
without giving any direct or quantitative evidence. Acharya et al. (1977) suggested that 
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the polymer molecules might act as the surfactant required to make the slip to no-slip 
hypothesis work. Bird et al. (1987) noted that the surfactant could accumulate at the 
trailing edge of a closed bubble but would be swept off a cusped knife edge by the flow. 
None of the aforementioned authors have shown that surface-active agents are present 
on the gas bubbles they studied, nor have any other quantitative supporting data been 
given. 

We believe that the jump in the velocity is due to the reduction in the drag which 
follows rapidly from the change of shape due to cusping near a critical capillary 
number with or without surfactants. There are no published examples of a discontinuity 
in the bubble rise velocity without a simultaneous change of shape. However De Kee 
et al. (1986) did not find a velocity discontinuity in the rise velocity of air bubbles in 
1 % CMC and 1 YO PAA solutions for which cusp-like tails are clearly evident. Their 
result seems to contradict the results of Acharya et al. (1977) and Leal et al. (1971) who 
did find small velocity jumps in similar liquids at the point of apparent cusping. 

2. Experiments 
2.1. Setup 

The experimental setup is shown in figure 2 and is explained in the caption and the 
following text. 

To obtain quantitative data from experiments on air bubbles rising in a liquid, the 
first problem that has to be solved is the control and measurement of the volume of the 
bubbles. We have developed an ‘equal volume’ method for this purpose. Each of our 
test columns has the specially designed ends shown in figure 2. The column is extended 
at both ends with two short tubes in divergent holes in the end covers. One tube is 
closed with a rubber hat, the other is linked to a scaled syringe through a valve. The 
filled column is vertical with the syringe at the bottom as shown in figure 2. The 
chamber between the syringe and the valve is filled with test liquid during the 
installation. The pressure at  the top of the column is balanced against atmosphere 
pressure by manipulating an injection needle in the rubber hat until there is no liquid 
coming out of the column and no air going in. Then, the valve is opened at the bottom 
and liquid is sucked out of the column using the syringe; air will enter the column from 
the needle at the top. Since the volume of the column is a constant, the volume of the 
air bubble is expected to equal the volume of the liquid in the syringe. At this stage, 
the needle is pulled out and the valve is closed, leaving an air bubble of known volume 
in the closed column. We estimate that the volume is correct to within 5 YO. Volumes 
of air bubbles of less than 0.05 cm3, which are mostly spherical or slightly elliptical, are 
determined from scaled pictures. 

The ‘equal volume’ method just described does not work well in large columns. In 
these, one finds a sensible compressibility induced by the large liquid mass acting on 
larger column walls of reduced rigidity. For example, a 3 x 4 x 46.5 in. column with 
wall thickness of 0.22 in. has a compressibility of about 1 cm3. For large columns we 
used the two-chamber device shown in figure 3 in which the large test column is 
attached to a small bubble-generating chamber by a valve. The small chamber works 
by the ‘equal volume’ method described in the previous paragraph. Both chambers are 
filled with test liquid and isolated from each other by the closed valve. An air bubble 
of known volume is then generated in the small chamber by the ‘equal volume’ method 
and is transferred to the test chamber by opening the valve. 

The holes on the end covers are tapered to prevent the entering air bubble from 
breaking. The heavy metal base is levelled by screws to ensure that the column is 
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FIGURE 2. Experimental setup. The test column (7) is fixed at each end with a rod (3) which can be 
put into a hole in the heavy metal base (10) to ensure that the column is vertical. The level is adjusted 
with three screws (1 1) under the base. The volume of the air bubble is controlled and measured by 
an ‘equal volume’ method. The column is filled with liquid and the pressure at the top of the column 
is balanced against the atmosphere. An injection needle (4) is put into the column through the rubber 
cover (5) at the top of the column. Now, the valve (8) is opened and liquid is sucked out of the column 
using a scaled syringe (9); air then enters the column from the needle. The volume of the air bubble 
is ideally equal to the volume of the liquid in the syringe. The needle is then pulled out and the valve 
is closed. Measurements can be conducted repeatedly by turning the column upside down. A light 
source (1) is put behind the column with a plate light diffuser (2) in between. A ruler (6) is mounted 
at the centre of the sidewall in the same plane as the rising air bubble. A photo camera (12) and video 
camera (13) are used to take pictures. 

Test chamber generating chamber 

FIGURE 3. Two-chamber system. The test air bubble is generated in a separate small chamber 
which is connected to the test column through a valve. 

vertical when one of the rods (3) in figure 2 is put into the hole in the base. For the large 
column, we placed an orthogonal frame above the levelled base. When the column is 
set on the base against the frame, it is vertical. 

We used still photography to accurately measure the bubble and cusp. A planar light 
was set behind the test column. A light-diffusing opaque plate between the light source 
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Inner 
dimensions 

Column Geometry (in.) Purpose Liquid tested 

1 
2 
3 
4 

5 

6 

7 

8 
9 

10 

Rectangular 
Square 
Round 
Rectangular 

1 x 1.63 x 28 
1 x 1 ~ 2 4  
2.76 x 29 
1 x 1.5 x 28 

Square 1.5 x 1.5 x 28 

Round 1.5 x 28 

Rectangular 3 x 4 x 46.5 

Round 0.8 x 8 
Round 2 x  14 
Square l o x  l o x  15 

Observation 
Observation 
Observation 
Observation 

and 
measurement 

and 
measurement 

and 
measurement 

and 
measurement 

Observation 

Observation 

Observation 

Observation 
Observation 
Observation 

S1 solution 
S1 solution 
2 YO aqueous polyacrylamide 
1 and 1.5 YO aqueous polyox, 
pure glycerin 

1.5 YO aqueous polyox 

1.5 YO aqueous polyox 

1.5 % aqueous polyox 

Aqueous polyox, STP glycerin 
STP 
0.85 % aqueous polyox 

TABLE 1 .  Geometry and dimensions of the bubble columns used in the experiments 

Liquid 
0.85 % aqueous 
polyox 
(WSR 301) 

1 .O 'YO aqueous 
polyox 
(WSR 301) 

1.5 YO aqueous 
polyox 
(WSR 301) 

2% aqueous 
polyox 
(WSR 301) 

s1 
STP 
Pure glycerin 
70% glycerin 
in water 

P 
(g (3n-Y 

1 

1 

1 

1 

0.875 
0.86 
1.26 
1.18 

70 
(Pa s) K n 

5.75 2.93 0.43 

7.65 3.97 0.42 

17.3 5.71 0.44 

35 

8.06 7.14 0.62 
18.0 17.8 0.85 
1.44 
0.023 

a C U 

(gcm-') (cm s-l) (dyn cm-I) 
90.6 12.2 60.9 

108 15.0 61.2 

132 20.3 63.3 

11.8 72.4 
0.97 286 

TABLE 2. Summary of material parameters: density p, viscosity 7 = KjR-' where y is the shear rate 
in s-I, climbing constant /? measured on a rotating-rod viscometer, the shear wave speed c measured 
on the shear wave speed meter, and surface tension u measured on a spinning-drop tensiometer. Note 
that the power-law parameters are fitted for moderate shear rates, and are not good for low shear 
rates. qo is the zero-shear viscosity and it is not equal to K 

and the column was used to remove unwanted reflections. A ruler was mounted on the 
sidewall at the centreplane where air bubbles rise. Ruler scales appearing in the 
photographs can be used to determine the real dimensions of an air bubble. We 
enlarged the pictures to take the measurements. For large air bubbles which rise with 
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higher speeds, a video camera was also used. The rise velocity of an air bubble was 
measured with a stop watch with 0.001 s accuracy. For large bubbles, rise velocities 
were also measured using a video system with a playback speed of 1/30 second per 
frame. The cusp curvature was measured from image processing photographs scanned 
into a computer. The ten bubble columns listed in table 1 were used for observations 
and measurements. 

2.2. Test liquids 
These are listed together with measured properties in table 2 and have been discussed 
and characterized in great detail in Joseph et al. (1994). The polyox solutions are 
standard test liquids with appreciable normal stress and sensible, if not large, shear 
thinning. S1 and STP do not shear thin appreciably at low and moderate rates of shear, 
but S1 is much more mobile and has larger normal stresses than STP. 

3. Rise curves and overall bubble shape 
In our experiments, the bubble volume is controlled at prescribed values. An 

equivalent diameter d is defined by the sphere with the same volume. The terminal 
velocity U of a rising gas bubble is determined by a balance of weight and drag. For 
creeping flow, the drag is proportional to Ud and the buoyancy to d 3 ;  hence U is 
proportional to d 2  in creeping flow. 

A rise curve is given by a plot of U versus bubble volume; these are primitive data. 
However, it is more instructive to look at instead at four other rise curves, all 
proportional to U, in which different physical effects may be more readily understood. 
In figure 4, we have plotted rise curves for 

Ca = U ~ , / c r  (Capillary number), (2) 

Re = pUd/q, (Reynolds number), (3) 

M = U / c  (Viscoelastic Mach number), (4) 

De = uh/d (Deborah number), ( 5 )  

where h = qo/c2p is obtained from shear wave speed measurements. The last three 
parameters are not independent because 

Re De = M a .  (6) 

These rise curves are presented for the two polyox solutions for which we could obtain 
a terminal U > c which was not too large to measure. The only way to increase the 
bubble velocity for a given gas and liquid is to increase the bubble volume and it will 
not be possible to raise U above c if the gas bubble is retarded by the close walls. 

Capillary number versus bubble volume curves for air bubbles rising in 1.5% 
aqueous polyox in four different bubble columns are shown in figure 5. Two 
transitional regimes can be identified in the rise curves. The first corresponds to a rapid 
increase in the terminal velocity apparently due to the formation of a cusp at a capillary 
number near unity. The sudden rise of velocity is a critical event associated with the 
change to a cusped shape. The slopes of the rise curves do not change after the velocity 
rise in our experiments or the others in the literature. This implies that U cc d 2  holds 
before and after the first transition. We get a ‘one time’ decrease of drag around the 
point of cusping. 
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FIGURE 4. Rise curves: volume of air bubble PS. (a) Ca, (b) Re, (c) M and (d) De. A terminal velocity 
U > c could not be achieved in the 1.5 YO polyox solution when the column 4 diameter was too small 
but we did obtain bubbles of large volume with U > c, but not too large to measure in the larger 
column 7. Critical volumes for discontinuities of value and slope of the rise curves are indicated. 

0 
Volume of air bubble (cm3) 

FIGURE 5. The capillary number versus volume for an air bubble rising in 1.5 YO aqueous polyox in 
four of the columns listed in table 1. A rapid variation of the rise velocity occurred more or less on 
Cu = I curves over a small interval of volumes. The magnitude of the jump and the intervals of the 
fast variation, for Cu = 1, depend on the column used. 

The second transition occurs for M x 1 ,  Re x 0.2 and De = M 2 / R e  x 5 .  De x 5 is 
constant, independent of d for d larger than the critical value for the change of slope; 
hence Uh/d x 5 shows that, after the second transition, U proportional to d replaces 
U proportional to d 2 ;  the second transition leads to increased drag. 
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FIGURE 6. Cusped bubbles rising in a 1.5 % polyox solution at subcritical values U < c, with volumes 
(a) 0.1 cm3, (b) 0.8 cm3 and (c)  1.5 cm3. Rectangular column 4 was used, and two mutually orthogonal 
views are shown. These prolate shapes can be identified with subcritical points on the rise curves. The 
orientation of the cusp edge is such that the broad edge is parallel to the narrow wall of the 
rectangular column. The cusp edge does not look like a true cusp, though under magnification it may 
have a cusp like appearance with a rounded tip of small radius. 

Two other effects are associated with the transition to supercritical flow. The first is 
the dramatic change in the orientation of the cusp edge which will be discussed in the 
following section. The second effect is the change from prolate shapes when M c 1 to 
oblate shapes when M > 1. These two effects are evident from the photographs in 
figure 6 for M c 1 and in figure 7 for M > 1. Oblate shapes of rising gas bubbles like 
those shown in figure 7 are not observed in Newtonian fluids (cf. figure 17). It seems 
probable that the increase in the drag is a consequence of the change of shape to oblate 
as the Mach number is increased past 1. 

An air bubble will change shape from spherical to oblate in a Newtonian liquid as 
its volume increases, but will change shape from spherical to prolate in a viscoelastic 
liquid. The same reversed pressure forces which align a long body sedimenting slowly 
in a viscoelastic fluid with the stream (Feng et al. 1995) will pull a spherical bubble into 



330 Y.  J .  Liu, T. Y.  Liao and D.  D.  Joseph 

(4 

FIGURE 7. Cusped bubbles rising in 1.5 % aqueous polyox solution at supercritical values U > c, with 
volumes (a) 2 cms, (6) 6 cm3 and (c) 10 cm3. The larger rectangular column 7 was used. These oblate 
shapes can be identified with supercritical points on the rise curves. The broad edge of the cusp is 
parallel to the wide wall of the rectangular column. 

prolate form. Further increases of the volume of the air bubble rising in a viscoelastic 
liquid lead to the formation of a cusp tail. We measured the maximum horizontal 
diameter d and height h of the bubble and the length 1, of the two-dimensional cusp. 
Figure 8 shows the relation between the horizontal diameter, the height and the bubble 
volume (equivalent diameter d,). When the bubble diameter is, say, less than 0.3 cm it 
is perfectly spherical. When the volume of the bubble is further increased (d > dl) ,  the 
bubble changes shape from spherical to prolate with diameter less than and height 
greater than the equivalent diameter for a sphere with the same volume. Further 
increases of bubble volume to an equivalent diameter d, lead to the formation of a two- 
dimensional cusp at the rear of the bubble and a rapid increase in the rise velocity. As 
the equivalent diameter of the bubble is further increased past a value d3, the shape 
change from spherical to prolate slows down and the bubble starts to become oblate. 
This change to oblate shape occurs in the region of volumes for which the viscoelastic 
Mach number passes through one. This change of shape appears to be associated with 
the emergence of inertia as an important effect when the rise velocity is faster than the 
speed at which elastic and diffusive signals can propagate (see 47 for a brief discussion). 
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.................................... 
0 0.5 1.0 1.5 2.0 2.5 3.0 : 

Equivalent diameter d, (cm) 

FIGURE 8. The relation between the maximum horizontal diameter, the height and the volume of the 
air bubbles in 1.5 % polyox in different columns: 0,  0, rectangular column 4; +, 0,  square column 
5; m, 0, rectangular column 7. The filled symbols are for the diameters and the open symbols are 
for the heights. 

33 1 

5 

0 

FIGURE 9. The relation between cusp length and equivalent diameter of an air bubble in 1 % and 
1.5 % aqueous polyox solutions in various columns. 

Liquid 4 (m) 4 (cm) 4 (4 
1.5 Yo polyox - 0.35 0.35 - 0.55 - 1.6 
1 % polyox - 0.3 0.3 - 0.4 - 1  

TABLE 3. The three critical equivalent diameters (volumes) corresponding to the shape changes 

Values of d,, d, and d3 from our experiments are given in table 3. Figure 9 shows the 
relation between the cusp length and the bubble volume. The length of the broad edge 
of the two-dimensional cusp increases linearly with different slopes before and after 
A4 = 1, as volume increases. The slope for M > 1 is greater (0.39 for 1 YO polyox and 
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0.486 for 1.5 YO polyox) than that for M < 1 (0.26 for 1 YO polyox and 0.243 for 1.5 % 
polyox). All the data can be fitted with the second-order polynomial as shown in 
figure 9. 

4. Shape and orientation of the cusp 

edge of gas bubbles rising in viscoelastic liquids. 
We present here a qualitative description of the shape and orientation of the cusped 

4.1. Shape of the cusped edge on a rising gas bubble 
When the volume of a rising air bubble in a viscoelastic fluid exceeds a critical value, 
a cusp will appear at the trailing edge. Photographs of the cusp edge on air bubbles 
rising in S1 are shown in figure 10 from two mutually perpendicular views in a 
rectangular column (a, 6 )  and square column (c, d )  respectively. We say that the cusped 
trailing edge is two-dimensional with the cusp edge shown in (a) and (c) in one 
direction, and the axe edge shown in (b) or the arrow edge shown in ( d )  in the 
orthogonal direction. The broad edge looks like an axe edge (shown in b) for smaller 
bubble volumes and like an arrow edge (shown in d )  when the bubble volume is large 
relative to the column cross-section. Hassagar’s (1979) picture shows a flat spade edge. 
A guillotine edge, sketched in figure 12 below, arises in the hole in a free surface pulled 
down by flow into a sink below. Such an edge might occur in a gas bubble held 
stationary by continuous withdrawing of the liquid in which it would otherwise rise. 

Air bubbles rising freely in a Newtonian liquid do not cusp. However, when the 
column is tilted to certain angles a cusp tail may appear when an air bubble rises 
against the inclined wall (see $6 for details). 

The two-dimensional cusping of rising air bubbles appears to depend on the fluid 
and the bubble volume, and is independent of the size or shape of the bubble column. 
Cusps were observed under very similar conditions in every column listed in table 1. 
This is a qualitative characterization; details of the cusp formation, the critical volume 
and the orientation of the cusp edge are affected by the geometry of the column. A 
cusp-like formation at the trailing edge of an air bubble rising in a round column filled 
with a 1.5 YO solution of polyox in water is shown in figure 1 1. 

Two-dimensional cusps were observed in all the aqueous polyox solutions we tested. 
These liquids shear thin and develop high normal stresses in shear. Two-dimensional 
cusps are also observed on air bubbles in S1 and STP. The S1 solution shear thins at 
low and moderate shear rates but it develops large normal stresses at the same shear 
rate. STP is a Boger fluid with only small normal stresses in the interval of shear rates 
for which the viscosity is almost constant. We do not know the precise properties of 
a viscoelastic fluid which cause it to cusp in such a peculiarly asymmetric way, but the 
cusp configuration is compelling evidence for stretching in extension. 

Another cusp shape can be produced on the free surface of a polymeric liquid in sink 
flow. This is like a stationary bubble which rises in a falling liquid. The sink flow 
experiment was done first by Gordon & Balakrishnan (1972) and is described by Bird 
et al. (1987) as follows: 

... The experiment is done by first filling a large tank with water, stirring the water to 
generate a circulation in the tank, and finally removing a plug from the center of the 
bottom to allow the water to drain. As the water empties from the tank, a very stable air 
core reaching all the way to the outlet forms, accompanied by a pronounced slurping 
sound. Now, if a very small amount of certain polymers is added to the draining water, 
the air core suddenly disappears and the noise that goes with it ceased.. . . 
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(c) Cusp edge ( d )  Arrow edge 

FIGURE 10. Cusped air bubbles rising in S1. (a )  A 2 cm3 bubble photographed from the wide side of 
the rectangular bubble column 1.  (h) Photographed from the narrow side of column 1. (c), ( d )  
Photographs of a 6cm3 bubble in the square bubble column 2 from mutually perpendicular 
directions. 

FIGURE 11. An air bubble of volume 0.5 cm3 rising in a 1.5% solution of polyox in water. The 
photographs were taken from two mutually perpendicular directions in round column 6. 

We did similar experiments, except that we made no attempt to produce a pre- 
existing swirl, since local rotations already in the liquid amplify strongly as the fluid is 
drawn into the vortex, as in a bathtub vortex. Our experiment was carried out in a 
container with a square cross-section, 10 x 10 x 15 in., which is shown in a cartoon 
form in figure 12. In sink flow of a Newtonian fluid, a very stable air core goes all the 
way down to the outlet from the liquid free surface. However if the liquid is 
viscoelastic, then the air core is cut off at a short distance from the free surface. This 
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+'Outlet 

FIGURE 12. Sink flow of (a) a Newtonian liquid and (b) a viscoelastic liquid. In the viscoelastic case, 
an inclined two-dimensional cusp with a guillotine edge develops at the place where the air core 
disappears. This cusp rotates around its axis as it fluctuates up and down. We could imagine this cusp 
on an air bubble held in place by withdrawing liquid. 

a = 0.75 in., b = 0.5 in., c < b 

FIGURE 13. The effect of the proximity of sidewall on the orientation of the broad edge of a cusped 
0.4 cm3 bubble in 1.5 % aqueous polyox. (a) The bubble is centred with a broad edge parallel to the 
narrow wall. (b) The bubble is moved to the left wall and the cusped edge rotates through 90". The 
stable orientation of the cusp edge in regime 1 is such that the broad edge is perpendicular to the 
closest wall. 

phenomenon is called vortex inhibition. What is new here is that at the place where the 
air core is cut off there is a two-dimensional cusp. The edge of this two-dimensional 
cusp looks like a guillotine edge and instead of being parallel to the free surface, it is 
inclined. The orientation of the guillotine edge is not fixed; it rotates around its axis 
and fluctuates up and down as indicated by the arrows in figure 12(b). The length of 
the guillotine edge in a 0.85% aqueous polyox solution is about 1/3 of the outlet 
diameter. 

4.2. Orientation of the cusp edge relative to the sidewall 
The orientation of a two-dimensional cusp relative to the sidewall of a rectangular 
column can be classified into three regimes. There is no special orientation of the cusp 
edge when the effects of the sidewalls of the column are minimal, that is when the 
column cross-section is round or the wall is far away from the rising bubble. 

The broad edge is parallel to the narrow window of a rectangular 
column. If the column is rectangular and the terminal velocity is low, the broad edge 
of the cusp will always be seen from the narrow window of the column and the sharp 
edge of the cusp will be seen in the wide window of the column. This regime appeared 
in the concentrated polyox solutions and the S1 solution but not in less viscoelastic 
fluid: STP or polyox solutions with weight concentrations less than 1 O/O. Figures 6 and 
10 are examples of this case. 

Regime I 
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FIGURE 14. Metastable orientations in regime 2 of a 0.5 cms air bubble rising in 1 % solution of polyox 
in water in rectangular column 4: (a) parallel to the narrow window, (b)  on the diagonal and (c) 
perpendicular to the narrow window. The orientation is also indeterminate when the sidewalls are far 
removed. 

In this regime, the orientation of the two-dimensional cusp is actually controlled by 
the proximity of the bubble to the nearest wall. If a bubble, whose broad edge is 
parallel to the narrow window of the column when the bubble is in the centre of a 
rectangular column, is placed closer to the narrow window, then the bubble will rise 
with its broad edge perpendicular to rather than parallel to the narrow window, as 
shown in figure 13. 

We may imagine a body linked to all walls by rubber bands. These bands are shortest 
near the closest wall and they are harder to stretch. The situation may be similar for 
a bubble rising in viscoelastic liquid with extensional effects dominant nearest the wall. 
In this case, any perturbation in orientation brings one or other side of the broad edge 
closer to the nearest wall where it experiences a still greater pull turning it further until 
the broad side is perpendicular to the wall. 

Large bubbles rise faster and the orientation of the cusp becomes 
indeterminate in square columns and even in rectangular ones. Though the two- 
dimensional cusp rotates about its axis in these cases, there appear to be three 
metastable orientations : the broad edge perpendicular to either the longer or shorter 
sidewalls, or across the diagonal, as shown in figure 14. The broad edge resides in one 
of these three orientation a little longer as it rotates. The diagonal orientation is more 
unstable than the other two. 

In this regime, the bubble volume and rise velocity are larger than in 
regime 2. In rectangular columns, the bubble rotates 90" from the Orientation it 
preferred in regime 1 ; the cusp edge is now seen in the narrow window and the broad 
edge in the wide window (see figure 7). The change in orientation from regime 2 to 
regime 3 occurs rather suddenly as the bubble volume is increased. The critical volume 
for a bubble rising in a 1.5 YO solution of polyox in water in rectangular column 7 is 
about 2 cm3. The critical volume in a I % solution of polyox in water in column 4 is 
about 0.5 cm3. 

The change in the orientation of the cusp in regime 3 is supercritical; it occurs when 
the terminal velocity is greater than the shear wave speed, U / c  = M > 1 (Re > 0.2) and 
greater than the diffusion speed U > 0.2v/d. This change is very dramatic since the 
bubble rotates through 90" as in the tilt transition in which sedimenting long particles 
turn 90" from along the stream to across the stream as M and Re increase past 1 (Liu 
& Joseph 1993; Joseph & Liu 1993). 

Another demonstration of the power of this supercritical transition can be obtained 
by slowing a bubble rising with U > c to U c c by tilting the bubble column. A 10 cm3 
air bubble was formed in the 1.5 YO polyox solution in rectangular column 7. The rise 

Regime 2 

Regime 3 
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FIGURE 15. Two-dimensional cusps in inclined columns: 10 cm3 bubbles rising in 1.5% polyox in the 
rectangular column 7. Photographs on the left-hand side were taken from the narrow side of the 
column, and those on the right from the wide side. (a )  Vertical column (supercritical), (6) column 
tilted 80" from horizontal (subcritical), (c) column tilted 40" from horizontal (wall dominated). The 
change in orientation which was caused by tilting through 80" is remarkable. 

velocity U > c in the vertical column was supercritical and the orientation is the 
characteristic one for regime 3 with the broad edge parallel to the wide window (figure 
15a). When the column is tilted 10" from vertical the bubble rises with U < c to an 
equilibrium near the upper wall with the broad edge characteristically perpendicular to 
the closest (upper) wall (figure 15b). An uncharacteristic orientation of the broad edge 
of the cusp can be seen in figure 15(c) for a tilt angle of 50" from vertical. In this case, 
the edge orientation is dominated by buoyancy which put the broad edge parallel to 
the close (upper) wall. 

5. Cusping and the sudden increase of velocity 
We have already remarked that cusp formation and the associated reduction of drag 

occur at a critical capillary number, Ca z 1 shown in figures 4(a) and 5. Previously 
published experiments designed to study the velocity jump also appear to correlate 
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Liquid 

1 % aqueous 
polyox 

0.3 % aqueous 

0.7 % aqueous 

0.25 % aqueous 

0.5% aqueous 

0.5 % aqueous 
Separans AP30 

1 % aqueous 
Separans AP30 

I % aqueous 
CMC 

0.75 % aqueous 
CMC 

0.1 % aqueous 
CMC 

0.5% PAA in 
glycerin 

0.5 % aqueous 
PAA 

0.5% aqueous 
PEO 

1 % aqueous 
polyox 

1.5% aqueous 
polyox 

ET497 

ET497 

J- I00 

5-100 

Critical 
radius 
(cm) 
0.134 

0.267 

0.288 

0.271 

0.286 

0.281 

0.262 

0.243 

0.229 

0.193 

0.235 

0.235 

0.235 

0.165 

0.275 

Velocity 
jump 

(cm s-’) 
0.5 - 2 

8 - 1 7  

0.8 - 4 

7 - 1 6  

1.3 - 7 

2 -  10 

0.5 - 2 

1.3 - 3 

12 m 20 

13 - 25 

0.8 - 2 

1.2 - 2.3 

1.4 - 3.5 

0.3 - 0.8 

0.05 - 0.5 

Critical 
capillary 
number 

0.61 - 2.44 

0.67 - 1.42 

0.53 - 2.67 

0.58 - 1.33 

0.87 - 4.67 

0.67 - 3.33 

0.83 - 3.33 

0.87 - 2 

0.8 - 1.33 

0.65 - 1.25 

0.63 - 1.59 

0.9 - 1.72 

0.93 - 2.33 

0.38 - 1.02 

0.14 - 1.44 

Note Reference 
Estimate Calderbank er al. (1970) 

Estimate Astarita & Apuzzo (1965) 

Accurate Leal et al. (1971) 

Estimate Acharya ef al. (1977) 

Accurate Present work 

TABLE 4. Critical values for cusp formation and rapid increase of the terminal velocity 

with a critical capillary number of order one. We calculated critical capillary numbers 
for the jump rise in velocity in the literature. These values and the values from our 
experiments are listed in table 4. 

Critical capillary numbers ranging between 0.48 and 9.24 for many different 
Newtonian and non-Newtonian liquids were found on the free surface cusp studied by 
Joseph et al. (1991) and Jeong & Moffatt (1992). These cusps were generated by two 
counter-rotating rollers submerged in the fluid which produce plunging flows which 
draw the free surface into a cusp. These studies also constructed analyses of the cusping 
of a free surface in models of the experiments. A local analysis of Stokes flow by Joseph 
et al. (1991) showed that if surface tension is zero, then the cusp shape is given by 
y = ax2I3. A similar analysis of Joseph (1992) showed that the same generic form cusp 
singularity satisfied the local problem for a second-order fluid with inertia neglected. 
In a more comprehensive and global analysis of another model, Jeong & Moffatt 
(1992) showed that if surface tension is small but not zero a ‘pseudo cusp’ with a small 
tip radius will form. The radius of such a tip is an exponential function of the capillary 
number and is of the order of angstroms when the capillary number is order one. Such 
rounding is a negligible perturbation of y = where the exponent does not change. 
In fact the results imply that intermolecular forces neglected in the analysis will always 
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1.6 t I 

- I  .6 -0.8 0 0.8 1.6 

Dimensionless radius of air bubble, x 

FIGURE 16. Analytic approximations of the cusp shape for the 2 cms and 8 cm3 bubbles shown in 
figure 7. The radius and height of the bubbles are made dimensionless with their equivalent diameters. 
The cusp is fitted to a power law whose index increases asymptotically to 2/3 as the bubble volume 
increases. 

come into play at a ‘pseudo cusp’ tip and disjoining pressure could collapse the 
rounded tip as happens for real bubbles of small diameter. 

In view of the results just given and the arguments leading to equation (1) we might 
wonder if y = ux2/3 is the universal asymptotic form for all free surfaces which give rise 
to two-dimensional cusps. 

In the case of rising bubbles it is not possible to resolve the shape of the singular tail 
at small volumes (see figure 6). Nonetheless, we can carry out a power-law fitting for 
the bubbles in figure 7. The power laws do not represent the shape of the bubbles in 
the tip region accurately when the bubble is small, but for large bubbles the index 
increases asymptotically to 2/3 (see figure 16). Similar results hold for other cusping 
bubbles; they all give rise to y = 

The appearance of cusps in gas bubbles rising in viscoelastic liquids at capillary 
numbers of the same order, 0(1), as in viscous liquids is strange because the capillary 
number expresses a balance between surface tension and viscous forces; the 
viscoelasticity is not included. This unexpected dependence on a capillary number was 
noted by Joseph et al. (1991) and they constructed an argument to show that the 
capillary number criterion also applies to a second-order fluid. The experiments are 
much more convincing than the argument so that the question remains to be answered. 

asymptotically. 

6. Cusping of a rising gas bubble in a Newtonian liquid 
Cusps never form at the tail of gas bubbles rising freely in a Newtonian liquid even 

when the capillary number based on the rise velocity is greatly in excess of 1. However 
the trailing ring edge of spherical cap bubbles which form when the rise velocity is very 
large is cusp like and conceivably could actually cusp if the flow were laminar and the 
ring edge were not prey to capillary instability. The rise velocity of a spherical cap 
bubble corresponds to a shearing motion that could pull out a cusp so that the choice 
of which U to use in a capillary number criterion depends on the underlying fluid 
dynamics. 

Another way to get a rising gas bubble to cusp is to shear it against a tilted wall. An 
air bubble does not cusp in glycerin as it rises freely in a vertical column; in fact, the 
rear portion of the bubble will be flatter than its spherical front (figure 17u). But when 
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( a )  
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FIGURE 17. An air bubble rising in glycerin in a vertical column does not cusp (see a for a 0.45 cm3 
bubble), but it does cusp when it is sheared against a tilted wall with tilt angle between 20" and 75", 
as shown in (6) for a 1 cma bubble rising in a 45" tilted column. 

a I cm3 bubble 
D 3 cm3 bubble 

0 
. 

M ~- 
a C .- M 

A 2 .- 
8 "  

Cusping 

0 10 20 30 40 50 60 70 80 
Tilt angle from horizontal (deg.) 

1 

FIGURE 18. Rise velocity of air bubble versus tilt angle of the column in a square column filled 
with pure glycerin. 

the column is tilted at any angle between 20" and 75" the bubble cusps as it rises against 
the inclined top wall (figure 17b). 

The velocities of a 1 cm3 and a 3 cm3 air bubble rising in pure glycerin in the square 
column 5 were measured as a function of tilt angle. The results are presented in figure 
18. At the highest cusping angle (75-80"), the rise velocity is maximum. The capillary 
numbers for cusping range from 0.5 to 2.6 for the 1 cm3 bubble and from 0.5 to 3.5 for 
the 3 cm3 bubble. These values are close to the critical value (Ca =2.62) found by 
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Joseph et al. (1991) in the case of rotating cylinders. In fact, the bubble rising against 
a tilted wall alone is equivalent to a stationary bubble pulled into a cusp by a plunging 
wall which is the basic cusping device in the rotating cylinder experiments. 

7. Discussion and conclusions 
We shall interpret the observations of transition at M = 1 as a change of type of the 

kind that is observed for flow over bodies (Joseph 1990) and in problems of 
sedimentation and particle migration by Liu & Joseph (1993), Joseph & Liu (1993, 
1995). 

The idea of a change of type has to do with the propagation of signals. In the 
supercritical case the body rises faster than the signals. A signal can propagate by a 
shear wave, so U > c ( M  > l), and by diffusion, so U > 0.2v/d (Re > 0.2). In this case 
the fluid above senses the motion immediately through the presure as in potential flow. 
This may be why the fronts of large gas bubbles look alike in Newtonian and 
viscoelastic fluids even when their back sides are different. We made some observations 
of bubbles rising in 0.85% aqueous polyox in the square bubble column 10: when 
M > 1 and the Reynolds number is large the bubble develops a lenticular shape as in 
Newtonian liquid but with a little tail at the rear. 

A summary list of the results obtained in this paper is as follows: 
(i) Cusped tails abruptly form on air bubbles rising in polymeric liquids with 

capillary numbers near unity. 
(ii) The cusped tail is basically two-dimensional with a broad edge in one view and 

a sharp cusped edge in the orthogonal view. The flow corresponding to the two- 
dimensional cusp can be considered like a biaxial extension expanding the broad edge 
and the long axis of the bubble and contracting the sharp edge. Axisymmetric cusp 
shapes are never observed. 

(iii) The shape of the broad edge may be like a spade, an axe, an arrow, or a 
guillotine blade. The guillotine blade arises in a sink flow of a viscoelastic liquid at the 
place near the dimple on the free surface where the core terminates (vortex inhibition). 
This dimple is actually a two-dimensional guillotine cusp which rotates around its axis 
and fluctuates up and down. We tested the form of the generic analytic cusp tip by 
fitting a and n in the expression y = ax" to measured values for even larger bubble 
volumes in which the cusp-like shape of the tail was even more in evidence. We found 
that n = 2/3, consistent with the form of a generic analytic cusp. 

(iv) The rapid cusping of a rising bubble for small increases of volume near a critical 
capillary number is also manifested in a rapid rise in the terminal velocity which has 
been recorded by previous experimenters. The jump in velocity occurs when the cusp 
appears and it can be as much as ten fold. 

(v) The orientation of the broad edge of a cusped bubble near a plane wall is 
evidently determined by the properties of the fluid and flow in very particular ways. 
Roughly speaking, when the viscoelastic Mach number is less than 1 in a strong 
viscoelastic liquid, the broad edge aligns itself perpendicular to a close wall; any 
deviation from this perpendicular orientation is unstable and the bubble will turn its 
broad edge perpendicular so that the profile of the sharp edge is seen through the wall. 
On the other hand, when the viscoelastic Mach number is greater than 1, the broad 
edge parallel to the close wall is stable and the perpendicular orientation is unstable. 
The orientation properties are summarized in the case of centred bubbles rising in 
rectangular columns by the statement that the sharp edge can be seen in the wide 
window when M < 1 and in the narrow window when M > 1. The orientation is 
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indeterminate near M = 1, or when the cross-section is circular, or when the sidewalls 
are further away, or when the liquid is less viscoelastic. Orientations perpendicular to 
walls are metastable when they are not stable and there is also a weaker tendency for 
the broad edge to align along the diagonal. 

(vi) The changes of the shape of an air bubble as it rises in a viscoelastic fluid are 
rapid, but smooth near the point of cusping. The change of shape from convex to 
concave near the tail of the bubble is very localized at first so that the determination 
of the exact shape at the tail has not been done. For large bubble volumes the cusp 
shape is evident in one view and the axe shape in the perpendicular view. Still larger 
volumes give rise to an arrow edge. We measured the growth in the length of the axe 
edge and found it to be linear in the bubble volume when M < 1 and linear but with 
a different slope when M > 1. 

(vii) There is a change in the slope of rise velocity versus bubble volume for M > 1 
corresponding to an increase in the lateral spreading of the bubble as is consistent with 
the dominating effect of inertia when M > 1. The Deborah number increases with 
bubble volume when M <  1 but is flat when M >  1 so that the balance between 
buoyancy and drag which gives rise to U a d 2  for M < 1 changes to U a d for M > 1. 

(viii) Air bubbles which rise along tilted walls are dominated by that wall and the 
broad edge of the cusp will always lie parallel to the wall if the tilt angle from horizontal 
is small enough. The walls of our columns were always wet by liquid so that the rise 
of the air bubble near a tilted wall is equivalent to the plunging of a plate coated with 
liquid into air. The cusp that forms here is like that produced by the rotating cylinders 
used by Joseph et al. (1991) and by Jeong & Moffatt (1992). We found that air bubbles 
cusped in glycerin in this tilted configuration in an interval of tilt angles with capillary 
numbers ranging from 0.5 to 3.5, consistent with the earlier results. 

This work was supported by the NSF, Fluid, Particulate and Hydraulic Systems, by 
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